
Machine Learning mini-project
Fall semester 2023

BIO-222 / Brea Johanni Michael

Élise Boyer
elise.boyer@epfl.ch

@elboyer228

Johann Clausen
johann.clausen@epfl.ch

@johanncc01

1. Introduction
This project focuses on predicting drug retention times in liquid chromatography using machine learning.
Retention time (RT), unique to each drug, depends on its chemical properties and the chromatography
setup. Data on drug structures and retention times from different labs and platforms has been gathered
in a training and test set. Through supervised learning, we aim to create models for quick and accurate
predictions. Ultimately, this could streamline drug analysis in diverse lab environments.

2. Feature engineering

Figure 1: Distribution of standardized
and unstandardized retention times

The provided training and test sets can be found on Kaggle.
Both sets contain molecule details in SMILES format, along
with ECFP and cddd data. Our first intuition was to add mol-
ecular proerties computed using the rdkit library, which can
be found in \Features\test-train_properties.csv.

We then used one-hot encoding to differenciate the provenance
of data based on the lab, which has an impact on the predic-
tions as RT depends on the chromatography setup.

Basic feature enginnering was implemented including removal
of constant predictors, remplacement of cddd’s missing data
using mean values and merging all features into a single
dataset.

In the importance.py file, we used RandomForestRegressor() from sklearn to compute the order
of importance of features. Not having satifactory results with rdkit properties and Lab features
only, we later improved feature selection by using SequentialFeatureSelector() from sklearn in the
findMostImportantFeatures(Features='cddd', number_of_important_features=10) function. Our find-
ings demonstrate that the optimal features included Lab features, rdkit properties and the 100 most
important cddd features. selectFeatures() function in tools.py allows easy extraction of the relevant
features for a specific model among all the features engineeried data.

3. Linear Models
Linear Regression: Linear Regression model allows us to examine our engineered data features. We
used the LinearRegression() class from sklearn and the rdkit properties. The first three features stood
out as very important, so we tested using them alone and combined with ECFP and cddd. When we
added ECFP and cddd, it caused a significant increase in errors. Our Kaggle scores¹ ranged between

¹Kaggle public scores are calculated using 27% of the final test data.

6.89 (using only the top 3 features) and 13 (when ECFP and/or cddd was included). After the one-
hot-encoding of the Lab and the correct selection of the features (100 best cddd), the error dropped
to 1.125.

1

https://github.com/elboyer228
https://github.com/johanncc01


Ridge Regression: To determine if the Linear Regression’s imprecision came from feature selection or
the model itself, we applied regularization using Ridge Regression Ridge() from sklearn.linear_model
and GridSearchCV() to tune the best regularization constant 𝜆. With the optimal 𝜆, the error decreased
to 1.07.

Stochastic Gradient Descent: Stochastic Gradient Descent’s implementation was executed using
SGDRegressor() from sklearn.linear_model. The hyperparameters (𝛼, 𝜂0, penalty) were tuned using
GridSearchCV(). With the best parameters being 𝛼 = 0.0001, 𝜂0 = 0.001, penalty = l2, the error was
similar to the Ridge one, which is coherent since SGDRegressor(loss='squared_error', penalty='l2')
and Ridge solve the same optimization problem using different methods.

4. Non Linear Models : Neural Networks
Implementation using Pytorch: Neural Network’s implementation began with the PyTorch [1] li-
brary. We first used basic layer layouts, along ReLU activation. A significant improvement was standard-
izing the input data before training, but this made error estimation less accurate. To avoid overfitting
on the validation set, we implemented early stopping, resulting in a error’s reduction of 0.16. Employing
cross-validation via KFold() helped prevent overall overfitting. We tried to vizualise the effect of learning
rate using plotLR(). Having way more hyperparameters to tune, we decided to transitioned to the Keras
library due to easier tuning function implementation.

Implementation using Keras and Tensorflow : After prediting some Pytorch models, we switched
to the Keras [2] library from Tensorflow. One of the reasons was to use the keras.Callbacks. This lets us
use mechanisms as EarlyStopping() without a code implementation, but only by calling those callbacks
when training the model. Another relevant callback we used was ReduceLROnPlateau().

Hyperparameter tunining : By submitting numerous Pytorch and Keras models and not having any
improvement, we started the hyperparameter tuning using keras_tuner library. We optimized the learn-
ing and rate decay, patience, loss functions as well as the layers architecture (number, size, activation
functions) which led to an error reduction of 0.16.

The implementation of the cross-validation in Keras tuning was more difficult than expected, but was
a critical asset for better error estimation. We defined a subclass of keras_tuner.Tuner called CVTuner
to check on 3 different folds of the data the performance of each trial.

5. Discussion
Throughout the progression of our project, one guiding principle has been the scores displayed on Kag-
gle. This guidance increaseing the risk of overfitting to the 27% of the test set, to reduce this risk, we
employ cross-validation for our Neural Networks and incorporate regularization into our linear methods.

To anticipate test and validation losses without requiring submission to Kaggle, we’ve integrated metric
computations across all our files. However, during the implementation of non-linear models, the valida-
tion loss, intended to approximate the Kaggle score, underestimated the actual error to varying degrees
across different models. This discrepancy complicates the enhancement of our model as it lacks a reliable
indication of the approximation of the real error.

The project underscored the vital role of feature engineering. Initially overlooking Lab fea-
tures, their inclusion notably reduced errors by approximately 5 in every models. Notably, the
SequentialFeatureSelector() proved more effective in ranking the importance of cddd compared to
RandomForestRegressor(). Despite employing SFS, introducing ECFP features failed to enhance predic-
tions. The primary project limitation stemmed from inadequate methods for engineering ECFP prop-
erties, hindering their effective utilization.

Considering these limitations, the Neural Network created with Keras, using the laboratory features
along with the top 100 cddd and rdkit properties, performs the best in terms of Kaggle’s error.

2



Bibliography
[1] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Li-

brary.” [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[2] F. Chollet and others, “Keras: A Deep Learning Library for Tensorflow.” [Online]. Available: https://
keras.io/

[3] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, An Introduction to Statistical Learning:
with Applications in Python. in Springer Texts in Statistics. Cham: Springer International Publish-
ing, 2023. doi: 10.1007/978-3-031-38747-0.

[4] J. M. Brea, “Introduction to machine learning for bioengineers - Course Material.” [Online]. Avail-
able: https://bio322.epfl.ch/

3

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://keras.io/
https://keras.io/
https://doi.org/10.1007/978-3-031-38747-0
https://bio322.epfl.ch/

	Introduction
	Feature engineering
	Linear Models
	Non Linear Models : Neural Networks
	Discussion
	Bibliography

